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Abstract. The number field sieve algorithm and its variants are the best
algorithms to solve the discrete logarithm problem in finite fields. When
the extension degree is composite, the tower variant TNFS is the most
efficient one. The interest in finite fields with composite extension degrees
such as 6 and 12 is highly motivated by pairing based cryptography,
which for the moment do not have a good quantum-resistant equivalent.
The two most costly steps in TNFS are the relation collection and the
linear algebra. While the use of order k Galois automorphism allow to
accelerate the relation collection step by factor k, using them to accel-
erate the linear algebra step remains an open problem. This problem is
solved for k = 2, leveraging a quadratic acceleration factor equal to 4.
In this work we solve this problem for k = 6 and k = 12. We present a
new construction that allows the use of an order 6 (resp. 12) Galois auto-
morphism in any finite field Fp6 (resp. Fp12), thus accelerating the linear
algebra step with approximately a factor 36 (resp. 144). Moreover, we
provide a SageMath implementation of TNFS and our new construction
and validate our findings on small examples.

1 Introduction

Context. The discrete logarithm problem in a cyclic group G with a generator
g ∈ G is the computational problem of finding an integer x modulo |G| for a
given target T ∈ G, such that T = gx. Despite the growing interest in post-
quantum cryptography, the discrete logarithm problem is still at the basis of
many currently-deployed public key protocols. This article deals with the discrete
logarithm problem in the group of invertible elements of a finite field, G =
F∗
pn , excluding small characteristic finite fields due to the existence of quasi-

polynomial time algorithms [4,18,29]. With the usual notation LQ(α, c) = exp(c·
(logQ)α(log logQ)1−α), a family of finite fields of size Q and characteristic p is
said to be of medium or large characteristic if there exists 1/3 ≤ α ≤ 1 and c > 0
such that p = LQ(α, c).

The Number Field Sieve. Initially proposed as an integer factoring algorithm in
the 90’s [9,31], the Number Field Sieve (NFS) was later adapted to the discrete
logarithm problem in prime fields [17], and medium and large characteristic
finite fields [26]. Currently, the most efficient algorithms to compute discrete
logarithm in medium or large characteristic finite fields is still (a variant of)
NFS. Numerous variants exist, depending on the sub-case, but they all compute
discrete logarithms in finite fields in time LQ(1/3, c)

1+o(1), for some constant



2 Haetham Al Aswad, Cécile Pierrot, Emmanuel Thomé

0 < c < 2.3 that depends on the variant and the characteristic size, where o(1)
tends to 0 as the finite field size Q tends to infinity.

The Tower variant, TNFS1 [27,28,38] applies when the extension degree n is
composite and its asymptotic complexity is lower that NFS for medium charac-
teristic finite fields. Recent works have shown that the TNFS variant is practical
as well. De Micheli, Gaudry and Pierrot [13] reported in 2021 the first imple-
mentation of TNFS and performed a record computation on a 521-bit finite field
with extension degree n = 6. One year later, Robinson [36] reported a record
computation using TNFS on a 512-bit finite field of extension degree n = 4.
These records confirm that TNFS is currently the best algorithm that computes
discrete logarithms in composite extension degree finite fields. Table 1 compares
the performances of NFS and TNFS on the last discrete logarithm records with
composite extension degrees. NFS and all its variants functions in four main

Year Finite field Bitsize Cost in Algorithm Workof pn core-years
2022 Fp4 512 6.3 TNFS [36]
2021 Fp6 521 2.8 TNFS [13]
2020 Fp6 423 9.3 NFS [33]
2017 Fp6 422 26.1 NFS [20]

Table 1: Cost in core-years of the last discrete logarithm records on finite fields
with composite extension degrees. The two most recent records were carried with
an implementation of TNFS and the two before with an implementation of NFS.
The two TNFS-records are approximately 100 bits larger, and yet their cost is
lower.

steps, polynomial selection, relation collection, linear algebra, and individual log-
arithm. Asymptotically speaking, the relation collection and the linear algebra
are equally hard and are the two most costly steps in all NFS variants. Fur-
ther, the discrete logarithm records show that they are the two most costly
steps in practice as well. Table 2 shows the cost of the relation collection step,
the linear algebra step and the the whole computation of recent records with
various extension degrees. Although the relation collection have a higher cost
than the linear algebra in these records except one, it is important to note that
the relation collection is significantly more parallelisable than the linear algebra
step. Additionally, adjusting some parameters—such as increasing the smooth-
ness bound—could balance the costs of these steps.

Composite extension degrees in cryptographic applications. Considering finite
fields with composite extensions is highly motivated by pairing-based cryptog-
raphy. Pairings first appeared in 1940 when Weil showed a way to map points of
order r on a supersingular elliptic curve to elements of order r in a finite field,
1 Sometimes referred to as the extended Tower Number Field Sieve (exTNFS).
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Cost in core days
WorkBitsize Finite Relation Linear Totalof pn Field collection algebra

795 Fp 876, 000 228, 125 116, 800, 0 [8]
595 Fp2 157 18 175 [3]
593 Fp3 3287 5113 8400 [16]
521 Fp6 388 23 413 [13]
512 Fp4 878 20 368 [36]
324 Fp5 359 11.5 386 [19]
203 Fp12 10.5 0.28 11 [24]

Table 2: Costs of the relation collection, the linear algebra and the whole com-
putation in the last discrete logarithm records with various extension degrees.

but the first algorithm to efficiently compute the Weil pairing was only published
in 2004 thanks to Miller [34]. In the early 2000s, efficient pairing-based protocols
were presented [6, 7, 25]. Nowadays pairings have a wide range of applications,
for example they are used in the Elliptic Curve Direct Anonymous Attestation
protocol that is embedded in the current version of the Trusted Platform Mod-
ule [40] (TPM2.0 Library), released in 2019. The security of these protocols
relies on both the discrete logarithm problem in the group of points of a pairing-
friendly elliptic curve, and on the discrete logarithm problem in a non prime
finite field, which means where the extension degree n > 1. The curves which
must be chosen with very restrictive properties to guarantee efficiency determine
the extension degree of the finite field involved. While some of the finite fields
used have prime extension degrees such as Fp2 and Fp3 , composite extension de-
grees are the most used ones such as Fp6 with the Cocks–Pinch modified curve
or the MTN6 curves, and Fp12 with the BLS12 curves. Interestingly, there is no
good post-quantum candidates to replace pairing-based protocols yet.

Use of Galois automorphisms to accelerate the two hardest steps in NFS. The
use of Galois automorphisms in the NFS context necessitate additional restric-
tive requirements to the polynomial selection step to construct the commutative
diagram with adequate automorphisms. Given adequate automorphisms of or-
der k, they can be used to accelerate the relation collection by approximately
a factor k. Further, when the automorphisms order is 2, these automorphisms
can be leveraged to accelerate the linear algebra step by approximately a fac-
tor 4 [3, 14, 44]. This was put into practice in the last discrete logarithm record
on Fp6 [14] which allowed to accelerate the linear algebra step by approximately
factor 4. However, the general problem of accelerating the linear algebra step by
approximately factor k2 using adequate order k automorphisms remains open
for k > 2. We refer to this problem by Pk.

Our work. We solve P6 and P12. Specifically, our work focuses on accelerat-
ing the linear algebra step in the TNFS algorithm when applied to finite fields
with extension degrees 6 and 12. Given any finite field of extension degree 6,
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resp. 12, we first show using the work in [3] a method to construct a TNFS
diagram with adequate automorphisms of order 6, resp. 12. Second, we present
a new construction that allows the use of these automorphisms to accelerate the
linear algebra step in TNFS with a factor approximately equal to 36, resp. 144.
Third, we provide an implementation of TNFS in SageMath together with our
construction to illustrate our findings on small size finite fields.

Outline of the article. We start with a description of TNFS in Section 2. Section 3
defines the Galois automorphisms that are useful in this work and shows how
to use them to accelerate the relation collection step. Section 4 exposes the
conditions and obstacles and reviews the literature on using automorphisms to
accelerate the linear algebra step. In Section 5 we present a new construction
and we show in Section 6 that the new construction allows to accelerate the
linear algebra step with factors 36 and 144 in finite fields of extension degrees 6
and 12 respectively. Finally, Section 7 presents our experiments that validate our
findings.

2 Background on the Tower Number Field Sieve

We target a finite field Fpn where n is composite. Let η be a non-trivial divisor
of n and denote κ = n/η. Since the computation of a discrete logarithm in a
group can be reduced to its computation in one of its prime subgroups by Pohlig-
Hellman’s reduction, we work modulo ℓ, a non trivial prime divisor of Φn(p),
with Φn the n-th cyclotomic polynomial. The classical TNFS setup considers
the intermediate number field Kh = Q(ι) where ι is a root of h, a polynomial
of degree η over Z that remains irreducible modulo p. For a number field K, we
let OK be its ring of integers. For simplicity, we assume throughout this article
that OKh

= Z[ι]. This implies in particular that h is monic.
Above Kh, define two number fields K1 = Kh[x]/f1(x) and K2 = Kh[x]/f2(x)

where f1, f2 are irreducible polynomials over OKh
that share an irreducible factor

φ of degree κ modulo the unique ideal p over p in Kh. In particular, f1 and f2
have degree at least κ. Let αi be root of fi in Ki for i = 1, 2. Because of the
conditions on the polynomials h, f1 and f2, there exist two ring homomorphisms
from OKh

[x] to the target finite field Fpn through the number fields K1 and K1.
This allows to build a commutative diagram as in Figure 3. When η and κ are
coprime (which is always possible with n = 6 or n = 12), then f1 and f2 can be
defined over Z. We make this choice for the rest of the article.

The general framework of TNFS is common to all its variants. The poly-
nomial selection step sets up the commutative diagram of Figure 3 by selecting
adequate polynomials h, f0 and f1. Thereafter, by finding many small to medium
size smooth numbers and factoring them, the relation collection step establishes
linear relations involving prime ideals of small norms in the number fields K1

and K2. The unknowns of these equations are the values on the small prime
ideals of a linear map called the virtual logarithm map. When enough equations
are found, the linear algebra step solves the system. Given a target T in the
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OKh [x]

K1 ⊃ OKh [x] /f1(x) K2 ⊃ OKh [x] /f2(x)

OKh/p[x]/φ(x)
∼= Fpn

mod φ, mod p mod φ, mod p

Diag. 3: Commutative diagram of Tower NFS.

finite field, the last step called the individual logarithm step establishes a linear
equation between the logarithm of T and the the virtual logarithms of the small
ideals, which reveals the logarithm of the target.

Polynomial selection. Several methods to do TNFS polynomial selection are
known. For example, the Conjugation, JLSV or Sarkar-Singh’s methods [3, 26,
37] can be used. Each polynomial selection method yields different degrees and
coefficient sizes which influence the whole performance of the algorithm. Based
on the recent records [13, 36], the Conjugation method seems to perform the
best in practice, and further, the work in [3] shows how to construct adequate
automorphisms using this method. Therefore, it is the only polynomial selection
method considered in this work.

Conjugation polynomial selection [3]. First a polynomial h of degree η
and with small integer coefficients that remains irreducible modulo p is chosen.
In order to reduce the number of duplicate relations, h should be selected with
the value ζKh

(2) as close to 1 as possible, where ζKh
denotes the Dedekind zeta

function of the number field. Second, a quadratic irreducible polynomial µ over
Z with small coefficients is initially selected, which possesses a root λ modulo p.
Third, two polynomials g0 and g1 with small integer coefficients are chosen with
the condition that deg(g1) < deg(g0) = κ and φ := g0 + λg1 is irreducible
modulo p. The polynomial f1 is defined as f1 := ResY (µ(Y ), g0 + Y g1), and f2
is defined as f2 := vg0 + ug1 where u

v ≡ λ mod p is a rational reconstruction
of λ. Given that f1 ≡ 0 mod p mod φ and f2 ≡ vφ mod p, both share φ as
a factor modulo p. Their respective degrees are 2κ and κ, and their coefficient
sizes are within O(1) and O(

√
p).

Relation collection. The goal of the relation collection step is to select, among the
set of polynomials ϕ(x, ι) ∈ OKh

[x] at the top of the diagram, the candidates
that yield a relation. A relation is found if the polynomial ϕ(x, ι) mapped to
principal ideals in OK1 and OK2 are smooth (respectively B1- and B2-smooth
for some bounds B1 and B2.). Most often the search space for relation collection
consists of linear polynomials ϕ(x, ι) = a(ι) − b(ι)x ∈ OKh

[x]. The ideals that
occur in the factorizations in OK1

and OK2
constitute the factor basis F . More
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precisely, we define it as the disjoint union F = F1 ⊔ F2 with, for i = 1, 2:

Fi(Bi) = {prime ideals of OKi
of norm ≤ Bi and inertia degree 1 over Kh}.

To test the Bi-smoothness on each side, one needs to evaluate the norms Ni(a(ι)−
b(ι)αi) for i = 0, 1 where Ni defines the algebraic norm in Ki. this allows to test
the Bi-smoothness over integer values. The relation collection stops when we
have enough relations to construct a system of linear equations that may be full
rank. The unknowns of these equations are the virtual logarithms of the ideals
of the factor basis. The definition and construction of the virtual logarithm map
is detailed in Section 2.1.

Linear algebra. A good feature of the linear system created is that the number
of non-zero coefficients per line is very small. This allows to use sparse linear
algebra algorithms in Z/llZ such as the Wiedmann algorithm that we describe
in Appendix B, or Coppersmith’s block Wiedemann algorithm [11] for which
parallelization is partly possible. The output of this step is a kernel vector cor-
responding to the virtual logarithms of the ideals in the factor basis.

Individual discrete logarithm. The final step consists in finding the discrete loga-
rithm of one or several target elements. This step is subdivided into two substeps:
a smoothing step and a descent step. The smoothing step is an iterative process
where the target element is randomized until the randomized value lifted back
to one of the number fields Ki is B′

i-smooth for a smoothness bound B′
i > Bi.

The second step consists in decomposing every factor of the lifted value, in our
case prime ideals with norms less than a smoothness bound B′

i, into elements of
the factor basis for which we now know the virtual logarithms. This eventually
makes it possible to reconstruct the discrete logarithm of the target element.

TNFS differs from NFS in this step as there exist improvements for the
smoothing step when the target finite field has proper subfields [2, 23].

2.1 The Shcirokauer and the virtual logarithm maps

This Section follows the presentation in [42]. A relation is found when an ele-
ment at the top of Diagram 3 is smooth in both K1 and K2. Let us drop the
subscript and consider K one of the two number fields. In the previous section we
presented the smooth elements of K by the factorization of the principal ideals
they generate. However, this is a simplified presentation and is not sufficient as
it does not allow to distinguish between two elements that generate the same
ideal. The goal of this section is to show how to correctly represent the elements
of the following set Γ and how to define the virtual logarithm map on it.

Γ := {ϕ ∈ K∗|(ϕ) factors in the factor basis}.

Since two elements that generate the same ideal only differ by a unit, the unit
group of K denoted as O× is our way to complete the representation.
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Dirichlet’s unit theorem provides the structure of the unit group by the fol-
lowing abelian group isomorphism

O× ≃ µK × Zr,

where r is an integer called the unit rank of K and µK is the group of roots
of unity of K. A Z-basis of the non-torsion part (i.e, Zr) is called a system of
fundamental units.

Since the virtual logarithm map is a linear map with value in Z/ℓZ, all ℓ-th
power elements fall in its kernel. For this reason, all groups will be considered
modulo the group of their ℓ-th powers. The following proposition provides the
structure of Γ/Γ ℓ as an Fℓ-vector space.

Proposition 1. Let F the factor basis on side K, I the group of fractional ideals
that completely factor in F , Γ and µK defined as above, and recall that ℓ is a
prime divisor of Φn(p). Then, Γ/Γ ℓ is a Fℓ-vector space. Further, suppose that
the class number of K denoted as hK and |µK| are both coprime to ℓ, then we
have the following vector space isomorphism

Γ/Γ ℓ ≃ O×/(O×)ℓ × I/Iℓ,

with basis {u1, . . . , ur} ∪ F/Fℓ, where, {u1, . . . , ur} is a system of fundamental
units of K considered modulo (O×)ℓ.

Note that in practice |µK| and hK are both coprime to ℓ with very large proba-
bility as ℓ is large.

Proof. The proof is presented in Appendix A.1.

The Schirokauer map If it was easy to compute a system of fundamental
units (which is not the case), then by Proposition 1 an element of Γ/Γ ℓ could
be represented by the factorization of the ideal it generates and its valuation on
a system of fundamental units. By the mean of a new hypothesis, Schirokauer
maps [39] allow to get around the hard computational problem of computing a
system of fundamental units.

Definition 1 (Usual definition of a Schirokauer map). Consider Γ from
Proposition 1 and denote r the unit rank of K. A Schirokauer map on Γ/Γ ℓ

is any full-rank Fℓ-linear map Γ/Γ ℓ −→ (Z/ℓZ)r that still has full rank when
restricted to O×/(O×)ℓ.

In other words, when restricted to O×/(O×)ℓ a Schiorokauer map on K is a dual
basis of a system of fundamental units.
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Construction of a Schirokauer map. Let F ∈ Q[X] irreducible such that K =
Q[X]/(F ) and suppose that ℓ does not divide its discriminant which is denoted
Disc(F ). Consider the decomposition of F modulo ℓ as the product of irreducible
factors: F =

∏
j Fj mod ℓ, where all factors are distinct thanks to the above

requirement. Denote α a root of F in K and for simplicity suppose that F is
monic (otherwise replace α by the dominant coefficient times α). By the Chinese
remainder theorem we have the ring homomorphism:

Z[α]/ℓZ[α] ≃ O/ℓO ≃ Fℓ[X]/(F ) ≃
∏
j

Fℓ[X]/(Fj),

where the first equivalence is due to the fact that ℓ does not divide the index of α
defined as [O : Z[α]], which is a divisor of Disc(F ). Define ω := lcm

(
ℓdeg(Fj) − 1

)
and consider x ∈ Γ . First, by the second isomorphism above, x mod ℓO can be
seen as an element of Fℓ[X]/(F ). Second, by the third isomorphism, we have xω ≡
1 mod ℓO. Further, lifting the congruence modulo ℓ2O we get xω ≡ 1+ ℓ ·P (x)
mod ℓ2O, where P is a polynomial over Z with degree bounded by deg(F )− 1.
By taking the quotient by Γ ℓ we get the following linear map

A :

{
Γ/Γ ℓ −→ Fℓ[X]/(F )

x 7−→ xω−1
ℓ mod ℓO := P (x)

(1)

As far as we know, all Schirokauer map constructions (including ours presented
in later sections) are based on the map A.

The Schirokauer map used in the literature is constructed from A as fol-
lows. Since the unit rank r of K is smaller than the degree of K over Q, a map
Λ : Γ/Γ ℓ → (Z/ℓZ)r is defined over an element x as the first r coefficients
of A(x). We emphasize that the choice of the first r coordinates is arbitrary
and non canonical (depends on the choice of F ), one could choose any r distinct
coefficients or even any r independent integer linear combinations of the coeffi-
cients. However, the integer linear combinations must be the same independently
of x. This provides a linear map that is computable in polynomial time. We em-
pathize that there is no efficient way for testing whether it is a Schirokauer map
or not, in particular because there is no efficient way of computing a system of
fundamental units. For the purpose of TNFS (and all NFS variants), this map is
supposed to be a Schirokauer map, which is stated by the following assumption.

Assumption 1 Λ have maximal rank on O×/(O×)ℓ.

Under assumption 1, an element ϕ ∈ Γ/Γ ℓ is represented by its Schirokauer
map value together with the factorization of the ideal it generates. That is, if
{p1, . . . , pb} is the factor basis on side K, then we use the representation

ϕ ↔ (Λ(ϕ)1, . . . , Λ(ϕ)r, valp1(ϕ), . . . , valpb
(ϕ)) (2)

The virtual logarithm map and the matrix of relations Consider back
both number fields K1 and K2 as in Diagram 3 with the corresponding sets Γ1

and Γ2 and with a Schirokauer map on each side: Λ1 and Λ2.



Accelerating the Tower Number Field Sieve with Galois Automorphisms 9

Definition 2 (Virtual logarithm). A virtual logarithm is a couple of Fℓ-linear
forms (vlog1, vlog2) where for i = 1, 2 vlogi : Γi/Γ

ℓ
i −→ Z/ℓZ and such that for

all ϕ ∈ OKh
[x] that project to both ϕ1 ∈ Γ1 and ϕ2 ∈ Γ2 we have

vlog1(ϕ1) = vlog2(ϕ2).

The goal of the relation collection and the linear algebra is to compute a virtual
logarithm map. Under Assumption 1 on Λ1 and Λ2, denote {uj,i}

rj
i=1 for j = 1, 2

for the dual basis of Λj , which is not computed. When an element ϕ is smooth
on both sides, we get the following equation

r1∑
i=1

Λ(ϕ1)ivlog(u1,i) +

b1∑
i=1

valp1,i
(ϕ1)vlog(p1,i)

=

r2∑
i=1

Λ(ϕ2)ivlog(u2,i) +

b2∑
i=1

valp2,i
(ϕ2)vlog(p2,i),

(3)

where the unknowns are the virtual logarithm values. Such an equation is rep-
resented as a row in the matrix of relations by its scalars which belong to Z/ℓZ
(and by putting a negative sign to the right side). Hence, each column repre-
sents either the virtual logarithm of an ideal in the factor basis, or the virtual
logarithm of one of the units. When enough relations are found, a non trivial
kernel element of the matrix contains the values of a virtual logarithm map.

One hopes that a virtual logarithm map “correspond” to a Z/ℓZ linear form
of the finite field, which is nothing else than the logarithm modulo ℓ in some
basis g̃. This is formulated by the following assumption, which is always assumed
for TNFS and all variants.

Assumption 2 Let Γ denote Γ1 or Γ2, and vlog a virtual logarithm map on
the corresponding side. For all ϕ, ϕ̃ ∈ Γ/Γ ℓ that project to the same element in
the finite field we have

vlog(ϕ) = vlog(ϕ̃).

Assumption 2 provides a linear map log on F×
pn/(F×

pn)ℓ that is partially defined.
Indeed, for ϕ ∈ F×

pn/(F×
pn)ℓ that lifts to ϕ ∈ Γ/Γ ℓ, we define log(ϕ) := vlog(ϕ).

The map log is the logarithm modulo ℓ in F×
pn in some basis g̃, as it is a linear

map of rank 1 over F×
pn/(F×

pn)ℓ.

Remark 1. Assumption 2 is needed as its constraints do not appear as equations
in the matrix of relations. One could add such equations, however, it is costly to
test whether lifts of the same element are smooth and it is rare that two elements
that project to the same element are smooth. One generally gets at the end of
the linear algebra a virtual logarithm map that verifies this Assumption. In the
rare scenario where it does not, the algorithm fails.
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3 TNFS Automorphisms

A desirable property of the polynomials h, f1, and f2, is to ensure the presence
of field automorphisms in K1 and K2. However, not any automorphisms would
be useful in the TNFS context, we need TNFS automorphisms, defined below.

Definition 3 (TNFS Automorphism). Let n denote the finite field’s degree
and consider the absolute fields K1 and K2 (i.e, defined over Q). Two automor-
phisms σ1 ∈ Aut(K1) and σ2 ∈ Aut(K2) of same order k constitute a TNFS
automorphism if the following two conditions are fulfilled:

– Both are Frobenius. Each fix a degree n prime ideal pi over p in the
corresponding absolute ring Oi.

– Project to the same Frobenius. There exists an order k Frobenius of
the finite field σ ∈ Gal (Fpn/Fp) such that for all (ϕ1, ϕ2) ∈ Oh[x]/(f1) ×
Oh[x]/(f2):

Ψ1 (σ1(ϕ1)) = σ (Ψ1(ϕ1)) and Ψ2 (σ2(ϕ2)) = σ (Ψ2(ϕ2)) ,

where for i = 1, 2, Ψi are the projection morphisms to the finite field defined
in diagram 3 by modφ mod p.

Note that the restrictive condition is the “both are Frobenius”. Indeed, the other
condition is just a matter of choosing the right automorphisms σ1 and σ2 so
that they project to the same Frobenius in the finite field. Concretely, since σ1

fixes a prime ideal of degree n over p, denoted as p, it can be defined modulo p.
This provides a Frobenius σ1 ∈ Gal (Fpn/Fp). Further, σ1 has order k because p
is not ramified in K1. Similarly, an automorphism σ2 ∈ Gal (Fpn/Fp) is defined
with σ2. If σ1 ̸= σ2, it is sufficient to replace σ1 by σs

1 with s coprime to k until
the equality is fulfilled, which will happen for an 1 ≤ s ≤ k coprime to k.

3.1 Galois automorphisms with the Conjugation polynomial
selection

Using the Conjugation polynomial selection, this section exposes a method to
construct a TNFS Diagram (3) with two automorphisms σ1 ∈ Aut(K1) and
σ2 ∈ Aut(K2) both of order equal to n, the finite field’s extension degree for
various values of n. Recall that n = ηκ, with η and κ non trivial and coprime.

Galois automorphisms with Conjugation. To construct a degree n automor-
phisms in both K1 and K2 with the Conjugation method, it is sufficient to choose
the three polynomials such that Kh has a degree η automorphism that we term
as σh and each of Kfi := Q[x]/(fi) has a degree κ automorphism denoted as σfi

for i = 1, 2. Indeed, for i = 1, 2, since η and κ are coprime, the automorphism σi

of Ki defined by the joint action of σh and σfi has order η × κ = n.
In [3], the authors provide choices of g0 and g1 in the Conjugation method

presented in §2 that provide automorphisms on Kf1 and Kf2 of orders equal
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to 2, 3, 4 and 6. We transcript theses choices in Table 4 and use them in our
constructions in the rest of the paper.

To sum up, to construct a TNFS diagram over Fpn with two automorphisms
(σ1, σ2) on (K1,K2) of order n, first choose h of degree η with cyclic Galois group
(for instance, h = g0 + g1 and deg(g0) = η from Table 4), and second, apply the
Conjugation method with (g̃0, g̃1) from Table 4 where deg(g̃0) = κ.

It is not clear whether this construction provides TNFS automorphisms as in
Definition 3. We prove later this statement for the automorphisms that we use.

Degree of Automorphism’s
g0 g1

Automorphism
(Kf1 ,Kf2) order α 7→

(4, 2) 2
x2 + 1 ax 1/α
x2 − 1 ax −1/α
x2 a −α

(6, 3) 3 x3 − 3x− 1 −a(x2 + x) −(α+ 1)/α

(8, 4) 4 x4 − 6x2 + 1 a(x3 − x) −(α+ 1)/(α− 1)

(12, 6) 6
x6 + 6x5− a(2x5 + 5x4− −(2α+ 1)/(α− 1)

20x3 − 15x2 + 1 5x2 − 2x)

Table 4: Table from [3]. Automorphisms with the Conjugation polynomial selec-
tion. The letter a designate any non-zero integer. The rational expression of the
automorphism and its order are the same for both number fields. Further, the
automorphism is also an automorphism of g0 + g1.

3.2 Acceleration of the relation collection with TNFS
automorphisms

Using field automorphisms to accelerate the relation collection step is a quite
straightforward idea. Suppose the existence of a TNFS automorphism of or-
der k as in Definition 3: σ1 ∈ Aut(K1), σ2 ∈ Aut(K2) that correspond to
σ ∈ Gal(Fpn/Fp). Let ϕ ∈ Oh[x] generates a relation:

(ϕ1) =
∏
p∈F1

pvalp(ϕ1) and (ϕ2) =
∏
p∈F2

pvalp(ϕ2).

since two conjugate ideals have the same norm, the factor basis F1 and F2 are
stable under the automorphisms σ1 and σ2 respectively. Therefore, applying the
automorphisms on both sides produces a new relation

(ϕ1)
σ1 =

∏
p∈F1

(pσ1)valp(ϕ1) and (ϕ2)
σ2 =

∏
p∈F2

(pσ2)valp(ϕ2),

where for an ideal I, the notation Iσi refers to its conjugate ideal σ(I). Indeed,
this is a relation since both ϕσ1

1 and ϕσ2
2 project to the same element in the finite



12 Haetham Al Aswad, Cécile Pierrot, Emmanuel Thomé

field, that is ϕ
σ
, where ϕ is the projection of ϕ1 and ϕ2 to the finite field. The

process is applied similarly with (σ2
1 , σ

2
2) . . . (σ

k−1
1 , σk−1

2 ), thus generating k − 1
new relations for each known relation. Overall, using automorphisms of degree k
divides the cost of the relation collection by approximately a factor k.

4 Acceleration of the linear algebra step with TNFS
automorphisms

A TNFS automorphism of order k allows to accelerate the relation collection
step by approximately a factor k. As for the linear algebra step, one hopes that
the virtual logarithms of k conjugate ideals can be recovered from the virtual
logarithm of one of these ideals. This would reduce the matrix size by a factor k
and hence accelerate the linear algebra step by approximately a factor k2 since
its complexity is almost quadratic. Unfortunately, this is not true in general. The
reason of failure is due to complications related to the Schirokauer map and the
units, as we examine in the subsequent.

Notations. All the subsequet applies on both number fields K1 and K2 from
Diagram 3. We drop the subscript and consider K one of the two number fields
together with σ ∈ Aut(K) the corresponding component of a TNFS automor-
phism of order k. Denote σ the corresponding Frobenius of the finite field which
expresses as σ : x 7→ xζ , where ζ is a k-th primitive root of unity modulo ℓ.
Further, the set {pi}bi=1 consists of the prime ideals in the factor basis, and Λ is
a Schirokauer map on side K. Additionally, Assumption 1 is assumed on Λ and
the set u := {ui}ri=1 denotes the system of fundamental units in K that is the
dual basis of Λ—here r denotes the unit rank of K. The notation vlog(u) refers
to the r dimensional vector (vlog(u1), . . . , vlog(ur)). If ϕ belongs to Γ defined
in Section 2.1, we abusively write vlog(ϕ) and Λ(ϕ) instead of vlog

(
ϕ mod Γ ℓ

)
and Λ

(
ϕ mod Γ ℓ

)
. Last but not least, recall that ℓ is supposed coprime to the

class number of K, to the unit rank r, and to the cardinal of the roots of unity
|µK|, which is true in practice with large probability.

Remark 2. Note that for all x ∈ F×
pn , log

(
xσ
)
≡ ζ log(x) mod ℓ. To accelerate

the linear algebra step using TNFS automorphisms, we need to construct a
virtual logarithm map that verifies vlog(pσ) ≡ ζ vlog(p) mod ℓ for all prime
ideals p that belong to the factor basis.

4.1 Virtual logarithms of conjugate ideals

We start by proving the following central lemma which states that the virtual
logarithm map vanishes on the elements fixed by a TNFS automorphism.

Lemma 1. Let σ one of the two components of a TNFS automorphism and
ϕ ∈ Γ such that σ(ϕ) = ϕ, then vlog(ϕ) = 0.
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Proof. By Assumption 2 on the virtual logarithm map, there exists g̃ a generator
of the finite field’s group F×

pn such that vlog(ϕ) = logg̃(ϕ) mod ℓ, where ϕ denotes
the projection of ϕ to the finite field. Moreover, ϕ belongs to the proper subfield
of Fpn that is fixed point-wise by σ. Indeed, by Definition 3 we have σ(ϕ) =

σ(ϕ) = ϕ. Lemma 1 from [22] states that the logarithm of an element that
belongs to a proper subfield of Fpn vanishes modulo ℓ, hence, logg̃(ϕ) ≡ 0 mod ℓ.

Applying the lemma to powers of σ, we get the following corollary.

Corollary 1. Let σ a component of a TNFS automorphism of order k. Consider
ϕ ∈ Γ such that there exists s a proper divisor of k with σs(ϕ) = ϕ. Then
vlog(ϕ) = 0.

The above lemma provides a link between the virtual logarithms of conjugate
ideals, which is the subject of the following proposition.

Proposition 2. Let σ one of the two components of a TNFS automorphism of
order k, and p a prime ideal. Then there exists a ∈ Kσ such that

k−1∑
i=0

vlog
(
pσ

i
)
= −hK Λ(a) · vlog(u).

Proof. By the class group theorem, there exists γ ∈ K such that (γ) = phK .
Therefor, for all i ∈ J0, k − 1K, (γσi

) = (pσ
i

)hK . Applying the virtual logarithm
map we get for all 0 ≤ i ≤ k−1, vlog

(
γσi
)
= Λ

(
γσi
)
·vlog(u)+hK vlog

(
pσ

i
)
.

Summing the k equations we get

vlog

(
k−1∏
i=0

γσi

)
= Λ

(
k−1∏
i=0

γσi

)
· vlog(u) + hK

k−1∑
i=0

vlog
(
pσ

i
)
.

The left hand side is zero by Lemma 1 and the result follows with a =
k−1∏
i=0

γσi

.

Computing the class number hK, the fundamental units u or the generators γσi

in the above proof are hard computational problems. For this reason, the link
between the virtual logarithms of conjugate ideals stated by Proposition 2 is
in general not useful in practical computations. However, if it happens that
Λ(a) = 0 or vlog(u) = 0, then the sum of the virtual logarithms of conjugate
ideals is zero. In this scenario, there might exist a virtual logarithm map that
verifies the equality vlog(pσ) = ζ vlog(p), where ζ is a k-th primitive root of
unity modulo ℓ, since this would be compatible with the sum over conjugates
being zero. All the constructions that allow to accelerate the linear algebra step
do so by guaranteeing the above mentioned vanishing.
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4.2 Condition to accelerate the linear algebra step with TNFS
automorphisms

The key idea to use automorphisms in the linear algebra step is to identify
constructions such that the following condition is satisfied in both number fields.

Condition 1 Let σ one of the two components of a TNFS automorphism of
order k. For each prime ideal p

k−1∑
i=0

vlog
(
pσ

i
)
= 0.

In constructions that verify Condition 1, one can add to the equations in the
matrix of relations the constraints (on both sides)

∀j ∈ J1, bK, vlog
(
pσj
)
= ζ vlog(pj),

where p1, . . . , pb are the ideals in the factor basis. Indeed, these constraints are
compatible with Condition 1 since for p an ideal in the factor basis we have

k−1∑
i=0

vlog(pσ
i

) = vlog(p)

k−1∑
i=0

ζi = 0.

Therefore, adding the above constraints results in asking the linear algebra step
to compute a virtual logarithm map that equates conjugate ideals up to a mul-
tiplication by a primitive root of unity. We emphasize that if Condition 1 is
not satisfied, then adding the above constraints would result in an incompatible
linear system with no solution. When Condition 1 is satisfied, these constraints
are added to the matrix in the following way. Each k columns C0, . . . , Ck−1 rep-
resenting k conjugate ideals p, . . . , pσ

k−1

are replaced by one column equal to
C :=

∑k−1
i=0 ζiCi.

When the orbit of the ideal p has length s a proper divisor of k, then there
exists a virtual logarithm map that verifies the above constraints and that van-
ishes on such ideals. Indeed, replacing σ by σk/s in Condition 1 shows that∑s−1

i=0 vlog(pσ
i

) = 0. That is, there exists a virtual logarithm map verifying
both equations vlog (pσ) = ζ vlog(p) and vlog (pσ) = ζk/s vlog(p), which implies
vlog(p) = 0. The columns corresponding to such ideals are simply removed from
the matrix.

In order to estimate the gain in performance in the linear algebra brought
by the automorphisms, it is crucial to examine the coefficient sizes of the new
matrix and not only its dimension. Indeed, since the original matrix is sparse
with coefficients mostly equal to −1, 0, or 1, the Wiedemann algorithm which
is presented in Appendix B, or Block-Wiedemann algorithm for better paral-
lelization, accomplishes the linear algebra step in approximately λN2 arithmetic
operations, where λ designates the average number of non-zero coefficients per
row and N denotes the matrix dimension. The use of an order k automorphism
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reduces the matrix dimension to approximately N/k, while maintaining the av-
erage number of non-zero coefficients per row roughly at λ. Indeed, in most
relations, a maximum of one ideal per orbit tends to appear. Further, the coeffi-
cients in the matrix become mostly equal to {−ζi, 0, ζi}0≤i≤k−1. The trick is to
decompose the matrix M in basis ζ. We get M = M0+M1ζ+ · · ·+Mk−1ζ

k−1,
where each matrix Mi, with dimension approximately N/k, mostly contains
coefficients equal to {−1, 0, 1}, with an average count of non-zero coefficients
per row around λ/k. Afterwards, each matrix-vector multiplication Mv in the
Wiedemann algorithm can be instead accomplished by k matrix-vector multipli-
cations with the matrices Mi, and k ·N/k multiplication with k-roots of unity
in Z/ℓZ:

Mv =

k−1∑
i=0

ζi (Miv) .

Therefore, the number of arithmetic operations needed to perform a matrix-
vector multiplication this way is k · λ/k · (N/k) = λ · N/k addition in Z/ℓZ
and k · N/k multiplications with k-roots of unity in Z/ℓZ. Counted in number
of arithmetic operations, the cost of a matrix-vector multiplication comes down
to approximately (λ+ k) ·N/k. Overall, multiplying the cost of a matrix-vector
multiplication by the matrix dimension we get the cost of the linear algebra using
order k TNFS automorphisms, that is (λ + k)(N/k)2. This is to be compared
with the cost of the linear algebra if the automorphisms are not used, which
is λN2. In conclusion, we expect an approximate performance improvement by
a factor of

λ

λ+ k
· k2. (4)

Since the order k (k = 6, 12 in our applications) is small compared to λ (for
instance λ = 200 in a record-size computation), we approximate the acceleration
factor to k2.

4.3 Literature on the use of Galois automorphisms to accelerate
the linear algebra step

In this section we examine constructions from the literature in which Condition 1
is satisfied. All these constructions work only with order 2 TNFS automorphisms.

Vanishing virtual logarithm for order two automorphism: CM fields
A complex multiplication field (CM field) is a number field that is a totally
imaginary and that has a totally real subfield of index 2.

Let K one of the two middle number fields in the TNFS diagram with a TNFS
automorphism σ of order k—here we abusively write σ for the component defined
over K. Suppose that K is CM, and further, suppose that the totally real subfield
of K is isomorphic to K̃ := Kσk/2

. We refer to such a field by the term CM TNFS-
compatible with σ. We emphasize the importance of the last condition as the only
useful subfields in this work are the ones related to the automorphism—those
fixed point-wise by a power of the automorphism.
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Proposition 3. Let K a CM TNFS-compatible field with a TNFS automor-
phism σ of order k. Denote K̃ := Kσm/2

its real subfield of index 2. Then, the
index v := [O×

K : O×
K̃ ] is finite and if v is coprime to ℓ we have

∀u ∈ O×
K/(O

×
K)

ℓ, vlog(u) = 0.

Note that since ℓ is very large, the index v will be coprime with ℓ with very large
probability.

Proof. The proof is presented in Appendix A.2.

The above proposition and Proposition 2 imply that Condition 1 is satisfied,
i.e., the virtual logarithm map vanishes on the orbits of the prime ideals. In
conclusion, if both number fields K1 and K2 are CM TNFS-compatible with a
TNFS automorphism (σ1, σ2) of order k, then the automorphism can be used to
accelerate the linear algebra step by a factor k2. In fact, as the virtual logarithm
of units are all zero, the Schirokauer map is not needed in this setup and the
corresponding columns in the matrix can be removed. Nevertheless, requiring
such constructions is very restrictive and the only known methods to do so are
with order 2 automorphisms as we explain next.

Construction of CM fields. In [3], the authors deal with finite fields of degree 4
and 6. For theses degrees, the authors provide modifications to the polynomial
selection methods to construct the two number fields K1 and K2 to be CM and
with a TNFS automorphism of order 2. The work of [44] generalizes this work
to any even degree finite field, thus constructs CM fields on both sides with
an automorphism of order 2. These constructions allow to accelerate the linear
algebra by approximately a factor 4. However, to our knowledge, there are no
known constructions for double sided CM fields with an automorphism of order
larger than 2.

Partial vanishing over the units. Additionally to the above cited works, in a non
published work (slides, How to get rid of units 2), Barbulescu proposes other
diagram constructions in which the virtual logarithm map vanishes on not all
but a fraction of the units. The examples provided consist in number fields K
with automorphisms σ of orders 2, 3, 4, and 6, in which the subfield Kσ forces a
part of the units in K to have a zero virtual logarithm.

Our work is an extension of this idea. We not only consider the field Kσ,
but also the other subfields related to the automorphism Kσ2 · · · together with
a new adequate Schirokauer map.

Vanishing Schirokauer map for order two automorphism The other
alternative to guarantee that Condition 1 is verified is to construct a Schirokauer
map that vanishes on the field elements fixed by the automorphism. Indeed, the
2 https://www.lix.polytechnique.fr/~guillevic/catrel-workshop/Razvan_
Barbulescu_CATRELworkshop.pdf

https://www.lix.polytechnique.fr/~guillevic/catrel-workshop/Razvan_Barbulescu_CATRELworkshop.pdf
https://www.lix.polytechnique.fr/~guillevic/catrel-workshop/Razvan_Barbulescu_CATRELworkshop.pdf
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right term in the equation of Proposition 2 would be zero. The challenge lies
in the construction of a Schirokauer map with this additional property. In the
521-bit record [14] on Fp6 , the authors manage to construct such a Schirokauer
map with an order 2 TNFS-automorphism σ. Let us examine this construction.

The subfield Kσ has index two, therefore, let ω ∈ K such that K = Kσ(ω). For
γ ∈ Γ/Γ ℓ, compute first A(γ), where A is defined in (1). Then, it decomposes
as A(γ) = γ0 + γ1ω mod ℓO with γ0 and γ1 having polynomial representation
over Fℓ of degree m/2−1, where m is the absolute degree of K. The Schirokauer
map Λ on γ is defined by taking r independent integer linear combinations of
the coefficients of γ1. This construction is possible if the unit rank r is smaller
or equal to the number of coefficients of γ1 which is m/2. This Schirokauer map
vanishes on the elements fixed by σ. Indeed, If γ belongs to Kσ, then so does any
lift of A(γ), and hence γ1 is zero. Therefore, Λ(γ) = 0. The authors provide two
such constructions on two instances, the first on a degree 6 finite field, and the
second on a degree 12 finite field. This construction is however specific to degree 2
automorphisms which provides a factor 4 acceleration in the linear algebra step.
If one tries to generalize the construction to an order k automorphism, this
would require the unit rank r to be smaller or equal to m/k, which becomes too
restrictive. Indeed, Dirichlet’s theorem implies that r ≥ m/2 + 1. Consequently,
if k ≥ 4 or (k = 3 and m > 6), the condition r ≤ m/k cannot be fulfilled.

5 New construction: Galois Schirokauer map

Given a TNFS automorphism σ of arbitrary order k, we propose a new Schi-
rokauer map that vanishes on the field elements fixed by σ. In fact, our Schi-
rokauer map vanishes on the field elements that are fixed by σs where s is any
proper divisor of k (including 1). This comes at the expense of reducing the rank
of the Schirokauer map. We call such a Schirokauer map a Galois Schirokauer
map. Let K one of the two middle number fields in Diagram 3 together with σ
the corresponding component of an order k TNFS automorphism. Recall the
set Γ associated to K from Section 2.1, and ℓ a prime divisor of Φn(p).

Definition 4 (Galois Schirokauer map (GSM)). A Galois Schirokauer map
(GSM) on side K is linear map Λ : Γ/Γ ℓ −→ (Z/ℓZ)w for some integer w, such
that Λ(ϕ) = 0 whenever there exists s a proper divisor of k with σs(ϕ) = ϕ. The
integer w is referred to as Λ’s dimension.

The dimension of a GSM is smaller than the unit rank of the corresponding
number field (as opposed to the usual construction in Definition 1). Nevertheless,
we prove that the property of vanishing on the subfields related to the powers
of σ is enough compensation in many cases. Specifically, Galois Shirokauer maps
allow the use of order 6 and 12 automorphisms in any finite field of extension
degree 6 and 12 respectively. This allows to accelerate the linear algebra step by
approximately a factor 36 for the degree 6 order and approximately a factor 144
for the degree 12 order. We underline that degree 6 and 12 finite fields are widely
deployed in pairing-based cryptography [10,15,21].
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Construction. Denote m the absolute degree of K. Then k divides m, and let
ω := m/k. Moreover, let d be a divisor of k that will be determined later. First,
we need a Q-Galois-compatible-basis of K. Consider α0, . . . , αω−1 ∈ Kσ and
y ∈ K such that {aiyσ

j}0≤i≤ω−1, 0≤j≤k−1 is a Q-basis of K. Second, recall that
ζ ∈ Fℓ denotes the k-th primitive root of unity such that the Frobenius of the
finite field related to σ is σ : x 7→ xζ . Then the GSM is defined as follows.

Definition 5 (Construction of GSM). For γ ∈ Γ/Γ ℓ, the new Schirokauer
map Λd : Γ/Γ ℓ → (Z/ℓZ)d·ω on γ is defined by the following procedure.

– First, compute the image of γ by A defined in (1).
– Second, decompose A(γ) in the above basis as

A(γ) ≡
ω−1∑
i=0

k−1∑
j=0

γ̃i,j aiy
σj

mod ℓO,

where for 0 ≤ i ≤ ω − 1 and 0 ≤ j ≤ k − 1, the scalar γ̃i,j belongs to Fℓ.
– Third, Λd is defined on γ in matrix form by:

Λd :



Γ/Γ ℓ −→ (Z/ℓZ)d·ω

γ 7−→



k−1∑
j=0

j≡0[d]

γ̃0,j ζj . . .
k−1∑
j=0

j≡0[d]

γ̃ω−1,j ζj

... . . .
...

k−1∑
j=0

j≡d−1[d]

γ̃0,j ζj . . .
k−1∑
j=0

j≡d−1[d]

γ̃ω−1,j ζj


.

The application Λd is a linear map. However, not any divisor d of k is convenient.
The divisor d must be selected to guarantee that Λd is GSM, i.e., vanishes on the
elements of K that are fixed by the automorphism σ or its powers. The following
lemma announces the behavior of Λd with respect to the automorphism.

Lemma 2. Let Λd from Definition 5. Then, ∀γ ∈ Γ/Γ ℓ, Λd (γ
σ) = ζJdΛd(γ),

where Jd is the following d× d circular matrix,

Jd =


0 1

. . . . . .
0 1

1 0


Proof. Since the automorphism σ fixes ℓO, it is well defined on O/ℓO, and in
particular on the image of A. We abusively still refer to it as σ. First, since A(γ)
is a polynomial expression in γ, then A(γσ) ≡ A(γ)σ mod ℓO. Second, A(γ)σ

decomposes as:

A(γ)σ ≡
ω−1∑
i=0

k−1∑
j=0

γ̃i,j yσ
j+1

≡
ω−1∑
i=0

k∑
j=1

γ̃i,j−1 yσ
j

mod ℓO,
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Third, we have,

Λd (γ
σ) = ζ



k−1∑
j=0

j≡0[d]

γ̃0,j−1 ζj−1 . . .
k−1∑
j=0

j≡0[d]

γ̃ω−1,j−1 ζj−1

... . . .
...

k−1∑
j=0

j≡d−1[d]

γ̃0,j−1 ζj−1 . . .
k−1∑
j=0

j≡d−1[d]

γ̃ω−1,j−1 ζj−1


= ζJdΛd(γ).

From the lemma we deduce the following corollary that provides the largest
integer d such that Λd still enjoys the desired property of vanishing over elements
fixed by σ or its powers.

Corollary 2. Define d as d :=
∏

p,valk(p)>0 p
valp(k)−1. Then, Λd from Defini-

tion 5 is GSM.

Proof. Let e denote a proper divisor of k and γ an element fixed by σe. From
Lemma 2, we have Λd(γ) = Λd

(
γσe)

= ζeJe
dΛd(γ). Thus, (ζeJe

d − Id)Λd(γ) = 0.
It is sufficient to prove that ζeJe

d − Id is invertible. Its determinant is equal
to (−1)dζedχJe

d
(ζ−e), where χJe

d
is the characteristic polynomial of Je

d . Let us
compute it. The eigenvalues of Je

d are {ζi·e·k/d}d−1
i=0 , therefore we have:

χJe
d
(X) =

d−1∏
i=0

(
X − ζi·e·k/d

)
=

 d
gcd(e,d)

−1∏
i=0

(
X − ζi·e·k/d

)gcd(e,d)

=
(
X

d
gcd(e,d) − 1

)gcd(e,d)
,

where the second equality comes from the fact that the smallest integer i such
that ζi·e·k/d equals 1 is the smallest i such that ie/d is an integer which is equal
to d/ gcd(e, d). Therefore, ζeJe

d − Id is invertible if and only if ζ−ed/ gcd(ed) ̸= 1,
which is equivalent to k ∤ lcm(e, d). This last condition is fulfilled. On the one
hand, recall that e is a proper divisor of k, hence, there exists a prime number
p such that 0 ≤ valp(e) < valp(k). On the other hand, by construction of d
we have valp(d) < valp(k). Therefore, valp(lcm(e, d)) < valp(k), and thereby,
k ∤ lcm(e, d).

It is noteworthy that our choice of d is the largest possible such that Λd vanishes
on the elements fixed by σ or its powers, i.e, such that Λd is GSM. If the order k
is square-free (equal to 6 for instance), then the largest d stated by Corollary 2
is 1. However, if one considers an order k that is not square-free (12 for instance),
then the corresponding d is strictly greater than 1 (equal to 2 with k = 12) and
the above construction provides a Schirokauer map Λd of dimension d · m/k,
where d =

∏
p,valk(p)>0 p

valp(k)−1.
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Example 1. Consider a finite field of degree 6 (i.e, n = 6) and a corresponding
TNFS diagram constructed with the Conjugation polynomial selection providing
the two middle number fields (K1,K2) of absolute degrees (m1 = 12,m2 =
6). Denote Γ1, Γ2 the corresponding sets defined in Section 2.1. Suppose the
existence of a TNFS automorphism (σ1, σ2) of order 6 (hence k = 6). Let us
examine the GSM construction (Λd,1, Λd,2) on (K1,K2).

– GSM on side K2. Since the automorphism has order 6, then by Corollary 2
the integer d is set to 1. Further, since the absolute degree of K2 is 6, then
the dimension of the GSM Λ1,2 is d · m2/k = 1. Concretely, given Q-basis
of K2 that expresses as {y, yσ2 , . . . , yσ

5
2}, with y ∈ K2, the image of γ ∈

Γ2/Γ
ℓ
2 is computed as follows. The image under A is decomposed as A(γ) ≡∑5

j=0 γ̃jy
σj
2 mod ℓO, and Λ1,2(γ) is equal to

∑5
j=0 γ̃j ζj , which belongs to

Z/ℓZ. Moreover, we have Λ1,2(γ
σ2) = ζΛ1,2(γ).

– GSM on side K1. The integer d that only depends on the automorphism’s
order is still set to 1. The absolute degree of K1 is 12, thus the dimension of
the GSM Λ1,1 on K1 is d ·m1/k = 2. Concretely, given Q-basis of K1 that
expresses as {y, yσ1 , . . . , yσ

5
1 , ay, ayσ1 , . . . , ayσ

5
1}, with y ∈ K1 and a ∈ Kσ1

1 ,
the image of γ ∈ Γ1/Γ

ℓ
1 is computed as follows. A is decomposed as A(γ) ≡∑5

j=0 γ̃0,jy
σj
1 +

∑5
j=0 γ̃1,jay

σj
1 mod ℓO. Then we have

Λ1,1(γ) =

 5∑
j=0

γ̃0,j ζj ,

5∑
j=0

γ̃1,j ζj

 ∈ (Z/ℓZ)2.

Moreover, we have Λ1,1(γ
σ1) = ζΛ1,1(γ).

5.1 Computing virtual logarithms with Galois Schirokauer maps

A Galois Schirokauer map differs from the usual construction presented in Sec-
tion 2.1 by several aspects. First, its dimension is usually smaller than the unit
rank. Second, its definition depends on the automorphism so that it enjoys the
property of vanishing on the field elements that are fixed by the automorphism.
When the Schirokauer map’s dimension is large enough (see conditions of Propo-
sition 4 at the end of the section), the second property ensures that Condition 1
is satisfied (see Proposition 2), allowing thus the use of the automorphism to
accelerate the linear algebra step by a approximately a factor quadratic in the
automorphism’s order. Third, a GSM not only vanishes on the elements that
are fixed by σ, but it also vanishes on the elements that are fixed by any of
the automorphisms σs where s is a proper divisor of k. We will show how this
last property compensate the decrease in the dimension (compared to the usual
construction) when k = 6, 12, thus ensuring that its dimension is large enough.

Condition to compute virtual logarithms with GSM. Let Λd as in Definition 5.
Recall that the dimension of Λd is ω := d · m/k, where k is the order of the
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automorphism, d is a divisor of k provided by Corollary 2, and m is the abso-
lute degree of the number field K. If ω ≥ r, then under the Assumption of Λd

having maximal rank on the units equal to r, it can be used to compute virtual
logarithms and to accelerate the linear algebra.

Assume now ω < r. Suppose the existence of a system of fundamental units
defined modulo ℓ-th powers, {u1, . . . , ur}, such that enough of them belong to
subfields fixed point-wise by the automorphism or its powers. More precisely,
assume that at least r−ω of them are fixed by a power of σ. Rearranging them,
this is equivalent to assuming that for all ω + 1 ≤ i ≤ r,

∃s|k, s ̸= k, σs(ui) = ui.

Then by Corollary 1 and Corollary 2, we have for all ω + 1 ≤ i ≤ r,

vlog(ui) = 0 and Λd(ui) = 0.

On the one hand, the vanishing of the virtual logarithms tells us that in order
to compute virtual logarithms, it is sufficient to construct a Schirokauer map
that has rank ω on span(u1, . . . , uω) (see (3)). On the other hand, the vanishing
of Λd tells us that rank(Λd(span(u1, . . . , ur)) = rank(Λd(span(u1, . . . , uω)). Con-
sequently, the assumption that Λd has maximal rank on the units equal to its
dimension stated in Assumption 1 implies the desired property of having maxi-
mal rank on span(u1, . . . , uω) equal to ω. The following proposition recapitulates
the condition needed to accelerate the linear algebra step with the new GSM.

Proposition 4 (Conditions to accelerate the linear algebra step with
GSM). Let K1 and K2 of absolute degrees m1 and m2 be the two middle number
fields in a TNFS diagram with a TNFS automorphism (σ1, σ2) of order k. Let
ωi = d ·mi/k, where d =

∏
p,valk(p)>0 p

valp(k)−1. Consider (Λd,1, Λd,2) the GSM
from Definition 5 over (K1,K2) with dimension equal to (ω1, ω2).

Assume Assumption 1, i.e., that the rank of (Λd,1, Λd,2) on the units is (ω1, ω2).
Suppose further that for i = 1, 2, there exists a system of fundamental units in Ki

in which at most ωi units do not belong to ∪s|k,s ̸=kK
σs
i

i .
Then, (Λd,1, Λd,2) can be used to compute a virtual logarithm map that verifies

Condition 1. Consequently, this accelerates the linear algebra step by a factor
approximately equal to k2.

6 Application: Acceleration of the linear algebra step
with order 6 and 12 TNFS automorphisms

Let Fp6 (resp. Fp12) any finite field of characteristic p and extension degree 6
(resp. 12). We show in this section how to construct a TNFS diagram on Fp6

(resp. Fp12) using the Conjugation polynomial selection method such that the
following two properties are verified. On the one hand, the diagram enjoys an
order 6 (resp. 12) TNFS automorphism, and on the other hand, the new GSM
from Definition 5 has dimension large enough for the computation of virtual
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logarithms (i.e., the conditions of Proposition 4 are fulfilled). As a consequence,
the automorphism can be used to accelerate the relation collection by an ap-
proximate factor of 6 (resp. 12) and the linear algebra step by an approximate
factor of 36 (resp. 144).

6.1 Construction of order 6 and 12 TNFS automorphisms

The extension degree n is 6 or 12. It decomposes as n = ηκ with η and κ coprime
and non-trivial (hence two possible setups for n = 6, and two setups for n = 12).
In all these setups, the Conjugation method presented in §2 with the choices
of Table 4 provides a TNFS diagram with two automorphisms σ1 ∈ Aut(K1)
and σ2 ∈ Aut(K2), both of order n. The following proposition states that they
constitute a TNFS automorphism as in Definition 3.

Proposition 5. For each of the setups (η = 3, κ = 2) or (η = 2, κ = 3) for
n = 6, or (η = 3, κ = 4) or (η = 4, κ = 3) for n = 12, let h, f1 and f2
three polynomials selected by the Conjugation method, where h of degree η has
cyclic Galois group and, f1 and f2 of respective degrees 2κ and κ are selected
with Table 4. Additionally, suppose that p does not divide their discriminant.
Denote σ1 ∈ Aut(K1) and σ2 ∈ Aut(K2) the resulting order n automorphisms.
Then they each fix a prime ideal of degree n above p, that is, (σ1, σ2) is a TNFS
automorphism.

Proof. Denote σh, σf1 and σf2 the automorphisms corresponding to the polyno-
mials of respective orders η, κ, and κ. Recall that since η and κ are coprime, the
automorphisms σ1 and σ2 are defined by the joint action of σh and σf1 , and σh

and σf2 . To prove the proposition, it is sufficient to prove that σh fixes a prime
ideal of degree η above p, and σf1 and σf2 each fixes a prime ideal of degree κ
above p.

Denote Oh, Of1 , and Of2 the ring of integers of Kh, Kf1 and Kf2 . By construc-
tion, h is irreducible modulo p, which means that pOh is irreducible of degree η.
Therefore, pOh is fixed by σh since the conjugate of a prime ideal above p is a
prime ideal above p. The same scenario occurs in Kf2 , the automorphism σf2

fixes pOf2 which is an irreducible prime ideal of degree κ.
It remains to prove that σf1 fixes a prime ideal of degree κ above p. We know

that pOf1 is not prime. In fact, by construction f1 has an irreducible factor
of degree κ modulo p, hence, pOf1 splits into a degree κ prime ideal p times
a remaining part of total degree κ. If the remaining part is not a prime ideal
of degree κ, then σ(p) = p since the conjugate of a prime ideal above p is a
prime ideal above p with the same residual degree. Hence, we restrict to the
case pOf1 = pq, with p and q are both irreducible prime ideals of degree κ.

A root of the polynomial µ (from the Conjugation method in §2) in Kf1 :=
Q(α1) is −g0(α1)/g1(α1) which is stable under the action of σ1 for all the choices
of (g0, g1) in Table 4. Therefore, the number field Kµ := Q[x]/(µ) is isomorphic
to Kσf1

f1
, and σf1 is a Kµ-automorphism of Kf1 .

We conclude the proof by looking at the decomposition pattern of the char-
acteristic p along the tower Q ⊂ Kµ ⊂ Kf1 . Denote Oµ the ring of integer of Kµ.
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By construction, µ has two roots modulo p, which means that pOµ decomposes
as a product of two prime ideals pa and pb, each of residual degree 1. Further,
recall that pOf1 = pq, therefore, after reordering the ideals, we have paOf1 = p
and pbOf1 = q. Since σf1 is a Kµ-automorphism of Kf1 , we must have σf1(p) a
prime ideal above pa, thus equal to p.

It is noteworthy that the reliance on the choice of (g0, g1) is not required if κ
is odd. Indeed, we have σf1(p) = p as the alternative σf1(p) = q would imply
that σκ

f1
(p) = q. This contradicts the fact that the order of σf1 is κ.

6.2 Large Enough Dimension for the Galois Schirokauer Map

Once the TNFS diagram is constructed with an order n TNFS automorphism
(σ1, σ2) as described in Proposition 5 where n = 6 or n = 12, Construction 5
defines a GSM (Λdn,1, Λdn,2) equal to

– (Λ1,1, Λ1,2) of dimension (2, 1) if n = 6,
– (Λ2,1, Λ2,2) of dimension (4, 2) if n = 12.

Indeed, this is a consequence of Corollary 2 since the absolute degrees of (K1,K2)
are (2n, n). This construction allows the use of the order n TNFS-automorphism
to accelerate the linear algebra step with a factor n2 if the following conditions
from Proposition 4 are satisfied.

– if n = 6:
• There exists a system of fundamental units in K1 in which at most 2

units do not belong to Kσ2
1

1 ∪ Kσ3
1

1 .
• There exists a system of fundamental units in K2 in which at most 1

unit does not belong to Kσ2
2

2 ∪ Kσ3
2

2 .
– if n = 12:

• There exists a system of fundamental units in K1 in which at most 4

units do not belong to Kσ4
1

1 ∪ Kσ6
1

1 .
• There exists a system of fundamental unit in K2 in which at most 2 units

do not belong to Kσ4
2

2 ∪ Kσ6
2

2 .

In Theorem 1, we provide restrictions on the number of real roots of the selected
polynomials to ensure that the subfields related to the automorphisms have unit
rank large enough, and thus that the above conditions are met. To this end, we
need to assume the following Assumption.

Assumption 3 (Unit lift assumption) Consider a TNFS diagram with K1

and K2 the two middle number fields with an order n TNFS automorphism
(σ1, σ2) where n = 6 or n = 12. For a number field K, let rK denote its unit
rank. Then for both i = 1, 2, there exists a system of fundamental units of Ki in
which

• r
K

σ3
i

i

+ r
K

σ2
i

i

− rKσi
i

units belong to Kσ3
i

i ∪ Kσ2
i

i if n = 6.
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• r
K

σ6
i

i

+ r
K

σ4
i

i

− r
K

σ2
i

i

units belong to Kσ6
i

i ∪ Kσ4
i

i if n = 12.

This assumption states that fundamental units in subfields lift into fundamental
units in the field. Under this assumption, the conditions of Proposition 4 (re-
stated above for the order 6 and 12) will be satisfied whenever for both i = 1, 2,
the dimension of Λdn,i is greater or equal to

• rKi
− (r

K
σ3
i

i

+ r
K

σ2
i

i

− rKσi
i
) if n = 6.

• rKi
− (r

K
σ6
i

i

+ r
K

σ4
i

i

− r
K

σ2
i

i

) if n = 12.

These quantities are (under the assumption) an upper bound on the dimension
of the units that do not belong to ker(Λdn,i) ∩ ker(vlog).

Unit rank of compositum. It will be useful in the subsequent to compute the
unit rank of a compositum of two linearly disjoint number fields. Recall that
two number fields E and F are said linearly disjoint over Q if every finite
subset of E that is Q-linearly independent is also F-linearly independent in
their compositum. In particular in our TNFS context, for i = 1, 2, the num-
ber fields Kh and Kfi are linearly disjoint over Q since we have by construction
degQ(Ki) = degQ(Kh)× degQ(Kfi). Let rh and rfi designate the number of real
roots of h and fi for i = 1, 2. Then, the unit rank rKi of Ki is equal to

rKi
= 1/2 (η deg(fi) + rhrfi)− 1. (5)

Indeed, since the absolute degree of Ki is η×deg(fi), it is clear that the embed-
dings of Ki are {(eh, efi)|eh embedding of Kh, efi embedding of Kfi}. Therefore,
the number of real embeddings of Ki is rh × rfi and formula (5) follows from
Dirichlet’s unit theorem.

The following theorem states the result about accelerating the linear algebra
step for extension 6 and 12 finite fields.

Theorem 1. Let n = 6 or n = 12. Let h, f1 and f2 constructed with the
Conjugation polynomial selection with an order n TNFS automorphism (σ1, σ2)
as described in Proposition 5, hence with the requirement that p does not divide
their discriminant. Suppose further the following restrictions on the number of
real roots of h, f1 and f2:

1. If η is even, then h has no real roots.
2. If η is odd, then f1 and f2 have no real roots.

Table 5 recapitulates these restrictions. Then, under Assumption 3, the field K1

(resp. K2) admits a system of fundamental units with:

• At most 2 (resp. 1) fundamental units that do not belong to Kσ2
1

1 ∪ Kσ3
1

1

(resp. Kσ2
2

2 ∪ Kσ3
2

2 ) if n = 6.
• At most 4 (resp. 2) fundamental units that do not belong to Kσ6

1
1 ∪ Kσ4

1
1

(resp. Kσ6
2

2 ∪ Kσ4
2

2 ) if n = 12.
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Consequently, the GSM of Definition 5 satisfy the conditions of Proposition 4,
i.e., they accelerate the linear algebra step by a factor approximately equal to 36
if n = 6, and 144 if n = 12.

n 6 12

Setup (η = 2, κ = 3) (η = 3, κ = 2) (η = 3, κ = 4) (η = 4, κ = 3)

Requirement:
h f1 and f2 f1 and f2 hPolynomials with

no real roots
Table 5: Requirements on the polynomials output by the Conjugation method
so that the GSM of Definition 5 allows to use an order n TNFS automorphism
to accelerate the linear algebra step.

Proof. The theorem heavily depends on the subfields trellis of the number fields K1

and K2. For this reason we must consider each setup. In particular, we prove the
theorem separately when n = 6 and when n = 12.

The extension degree n = 6. Let us consider the two setups η = 3 and η = 2.

1. The case η = 3 represented in Figure 6. Suppose η is taken equal to 3.
The polynomial h is chosen such that Kh is Galois. Therefore, Kh is totally
real (since its degree is odd), and its unit rank is equal to 2. The rest of the
proof for the case η = 3 is divided into the examination of the units in the
two fields K1 and K2.
– Distribution of the units along the subfields of K2. Since h has

three real roots, then the unit rank of K2 is rK2
= 2+3rf2/2. The field K2

has two subfields related to the automorphism σ2 which are Kσ2
2

2 that is
isomorphic to Kf2 , and Kσ3

2
2 that is isomorphic to Kh. Their respective

absolute degrees are 2 and 3. By Dirichlet’s theorem, the sum of their
unit ranks is 2+rf2/2. Further, the subfield Kσ is isomorphic to Q, hence
its unit rank is 0. Under Assumption 3, if 2 + 3rf2/2− (2 + rf2/2) ≤ 1,
then there exists a system of fundamental units in K2 with at most 1

unit not in Kσ2
2

2 ∪ Kσ3
2

2 . This is equivalent to asking for rf2 ≤ 1. Since f2
has degree 2 and the number of real roots of f2 is necessarily even, this
is equivalent to requiring f2 with no real roots.

– Distribution of the units along the subfields of K1. The field K1

has unit rank rK1
= 5 + 3rf1/2. Further, its subfield Kσ2

1
1 is isomorphic

to Kf1 which is of absolute degree 4 and has unit rank rf2/2 + 1. The
subfield Kσ3

1
1 has unit rank larger or equal to 2 since it contains Kh

which has unit rank 2 (Kh is fixed point-wise by σ1). Further, since the
absolute degree of Kσ1

1 that is 2 is coprime to the absolute degree of Kh
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that is 3, the field Kσ1
1 cannot be a subfield of Kh. That is to say that

rKh
+r

K
σ2
1

1

≤ r
K

σ3
1

1

+r
K

σ2
1

1

−rKσ1
1

. Therefore, if rK1
−(rf2/2+3) ≤ 2, then

rK1
− (r

K
σ3
1

1

+ r
K

σ2
1

1

− rKσ1
1
) ≤ 2, and Assumption 3 implies the existence

of a system of fundamental units of K1 with at most 2 fundamental units
that do not belong to Kσ2

1
1 ∪ Kσ3

2
1 . This is the case when rf1 = 0.

2. The case η = 2 represented in Figure 7 Here η is set to 2. The unit
rank of Kh is equal to 0 since h has no real roots. The rest of the proof for
the case η = 2 is divided into the examination of the unit distribution along
the subfields of K1 and K2.
– Distribution of the units along the subfields of K2. The polyno-

mial f2 has 3 real roots since it has odd degree 3 and an automorphism
of order 3. Thus, by (5), the unit rank of K2 is 3rh/2 + 2 = 2. The sum
of the unit ranks of Kσ2

2
2 which is isomorphic to Kh and Kσ3

2
2 which is

isomorphic to Kf2 is rh/2+2 = 2. Since Kσ2
2 ≃ Q, Assumption 3 implies

the existence of a system of fundamental units of K2 that completely
belongs to Kσ2

2
2 ∪ Kσ3

2
2 .

– Distribution of the units along the subfields of K1. Since h has
no real roots, then by Equation (5), the unit rank of K1 is 5. Let us
distinguish two cases whether the extension field Kσ1

1 , which is of absolute
degree 2, is totally real or totally imaginary. Suppose first that Kσ1

1

is totally real. The field Kσ3
1

1 which is isomorphic to Kf1 is a relative
extension 3 field over Kσ1

1 . Thus, Kσ3
1

1 cannot be totally complex. Its
units rank can only take values equal to 3, 4, or 5 (not 2). In all three
cases, we have under Assumption 3, a system of fundamental units of K1

with at most 2 units that do not belong to Kσ3
1

1 ⊂ Kσ2
1

1 ∪ Kσ3
1

1 . Suppose
now that Kσ1

1 is totally imaginary. Then, the unit rank of Kσ1
1 is 0. On

the one hand, Kσ3
1

1 has absolute degree 6, hence, its unit rank is at least 2.
On the other hand, the field Kσ2

1
1 has absolute degree 4, hence, its unit

rank is at least 1. Hence we count 3 independent units in Kσ2
1

1 ∪Kσ3
1

1 and
the result follows under Assumption 3.

The extension degree n = 12. Consider the two setups η = 3 and η = 4.

– The case η = 3 represented in Figure 8. The polynomial h has three
real roots and the unit rank of Kh is 2. Let us examine the distribution of
the units along the subfields of K2 and K1.
• Distribution of the units along the subfields of K2. The unit rank

of K2 is 5 + 3rf1/2. We require f2 to have no real roots, hence, rK2 = 5.
Further, we count 2 for the unit rank of Kh which is isomorphic to a
subfield of Kσ6

2
2 , and 1 for the unit rank of Kf2 ≃ Kσ4

2
2 . Since the absolute

degree of Kh that is 3 is coprime to the absolute degree of Kσ2
2

2 that is 2,
we necessarily have r

K
σ6
2

2

+r
K

σ4
2

2

−r
K

σ2
2

2

≥ 3. Therefore, there exists under
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Assumption 3 a family of fundamental units of K2 in which at most 2
units do not belong to subfields related to σ2.

• Distribution of the units along the subfields of K1. Let us now
examine the field K1. We require f1 to have no real roots. Hence, the
unit rank of K1 is 11. On the one hand, the unit rank of Kσ4

1
1 which is

isomorphic to Kf1 is 3. On the other hand, we shall count the unit ranks
of Kσ6

1
1 and the intersection Kσ4

1
1 ∩ Kσ6

1
1 = Kσ2

1
1 .

To this end, let g be a defining polynomial of Kσ2
1

1 over Q, and denote rg
the number of its real roots. The polynomial g has degree 4, and the
unit rank of Kσ2

1
1 is equal to 1+ rg/2. Further, Kσ6

1
1 is the compositum of

Kσ2
1

1 and Kh which are of respective absolute degrees 4 and 3. Since the
degrees are coprime, we deduce that the unit rank of Kσ6

1
1 is 5 + 3rg/2.

Therefore, we have r
K

σ6
1

1

+ r
K

σ4
1

1

− r
K

σ2
1

1

= 7 + rg. Since rg ≥ 0, and the

unit rank of K1 is 11, Assumption 3 implies the existence of a system of
fundamental units of K1 with at most 4 fundamental units that do not
belong to subfields related to σ1.

– The case η = 4 represented in Figure 9. We require the polynomial h
to have no real roots. Therefore, the unit rank of Kh is 1. We continue the
proof by examining the units in both number fields K2 and K1.
• Distribution of the units along the subfields of K2. The unit

rank of K2 is 5. Since f2 has an automorphism of order 3, the unit
rank of Kf2 ≃ Kσ3

2
2 is 2. Additionally, we count 1 for the unit rank

of Kh ≃ Kσ4
2

2 . Since these two subfields have coprime absolute degrees
equal respectively to 3 and 4, we conclude under Assumption 3.

• Distribution of the units along the subfields of K1. Now we con-
sider the field K1. Since h has no real roots, the unit rank of K1 is 11.
We want to prove that the quantity ν := r

K
σ6
1

1

+ r
K

σ4
1

1

− r
K

σ2
1

1

is greater

or equal to 11− 4 = 7.
Denote e the number of real embeddings of Kσ2

1
1 . Hence, its unit rank

is 1 + e/2. Further, consider a polynomial U that defines Kσ6
1

1 over Kσ2
1

1 ,
i.e, Kσ6

1
1 = Kσ2

1
1 [X]/(U). The polynomial U can be taken with rational

coefficients since its degree that is equal to 3 is coprime with the absolute
degree of Kσ2

1
1 that is equal to 4. From the fact that the number of real

roots of U is at least 1, we deduce by (5) that the unit rank of Kσ6
1

1 is
at least 5+ e/2. Moreover, since the absolute degree of Kσ4

1
1 is 8, its unit

rank is at least 3. Overall, we get that ν ≥ 5 + e/2 + 3− (1 + e/2) = 7.
This concludes the proof provided Assumption 3.

In conclusion, it is sufficient to restrict the number of real roots of the selected
polynomials as indicated in Table 5, which is practically easy, in order to ensure
that the GSM construction from Definition 5 is sufficient to compute discrete
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logarithms while using order 6 or 12 TNFS automorphisms to accelerate the
linear algebra step. These restrictions allow to construct the number fields K1

and K2 with enough fundamental units that belong to subfields related to the
automorphisms, and therefore, the few remaining units that do not vanish by
both the GSM and the virtual logarithm can be controlled by the GSM.

K1

Kσ3
1

1

Kσ2
1

1 ≃ Kf1

Kh

Kσ1
1

Q

2

3

2

3

2

3

2

(a) Lattice of σ1-related subfields of K1 of
absolute degree 12.

K2

Kσ3
2

2 ≃ Kh

Kσ2
2

2 ≃ Kf2

Q

2

3

3

2

(b) Lattice of σ2-related subfields of K2 of
absolute degree 6.

Fig. 6: Lattices of automorphism-related subfields with the setup n = 6 and
η = 3. Each edge indicates a field extension and is labeled with the corresponding
extension degree.

6.3 Application to other Automorphism Orders?

When applied on a degree n finite field with n = η × κ, the Conjugation poly-
nomial selection constructs a TNFS-diagram by selecting the polynomials h, f1,
and f2 of respective degrees η, 2κ, and κ.

When n equals 6 or 12, we showed how to select the polynomials in order to
have an order n TNFS automorphism. This allows the construction of a GSM
as in Definition 5. Under the restrictions on the number of real roots of the
polynomials presented in Table 5 and the Assumptions 1 and 3 we proved that
these GSM allow the computation of a virtual logarithm map while accelerating
the linear algebra step by approximately a factor n2.

The natural continuation of this work is to extend the use of these Schirokauer
maps to other composite orders. Provided a finite field of degree n, if we are
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K1

Kσ3
1

1 ≃ Kf1

Kσ2
1

1

Kσ1
1 Kh

Q

2

3

3

2
2

2
2

(a) Lattice of σ1-related subfields of K1 of
absolute degree 12.

K2

Kσ3
2

2 ≃ Kf2

Kσ2
2

2 ≃ Kh

Q

2

3

3

2

(b) Lattice of σ2-related subfields of K2 of
absolute degree 6.

Fig. 7: Lattices of automorphism-related subfields with the setup n = 6 and
η = 2. Each edge indicates a field extension and is labeled with the corresponding
extension degree.

able to construct a TNFS automorphism of order n with say the Conjugation
polynomial selection (hence the absolute degrees of the middle number fields
are 2n and n), then we are able to define a GSM over the TNFS diagram.
The dimensions of these GSM are provided by Corollary 2 and their values are
exhibited in Table 10 for various values of n. Thereafter, if some restriction on
the polynomials restrict enough fundamental units to belong to subfields related
to the automorphism, then theses GSM allow to accelerate the linear algebra
step with approximately a factor n2.

The problem of constructing a TNFS automorphism of degree n for any
extension degree n is a hard problem. We were not able to solve it for n = 4
with η and κ not coprime, both equal to 2. The same difficulty appears whenever
η and κ are not coprime, for instance with n = 8, n = 9 or n = 16.

For other degrees that are square-free, such as 10, 14, 15, while the construc-
tion of TNFS automorphisms might be feasible, the GSM presented in this work
cannot be used to compute virtual logarithms with the Conjugation method.
Indeed, their dimensions on (K1 of degree 2n, and K2 of degree n) are (2, 1),
which are too small to control the unit part that does not belong to subfields
related to the automorphism.

The investigation of other non square-free orders such as 18, 20 and the
orders where η and κ cannot be taken coprime is left for a future work. Another
interesting continuation is to apply the GSM construction to other polynomial
selection methods.
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K1

Kσ6
1

1

Kσ4
1

1 ≃ Kf1

Kσ3
1

1

Kg := Kσ2
1

1

Kh

Kσ1
1

Q

2

3

2

3

2

2

3

2

3

2

(a) Lattice of σ1-related subfields of K1

(absolute degree 24).

K2

Kσ6
2

2

Kσ4
2

2 ≃ Kf2

Kσ3
2

2 ≃ Kh

Kσ2
2

2

Q

2

3

2

3

2

3

2

(b) Lattice of σ2-related subfields of K2

(absolute degree 12).

Fig. 8: Lattices of automorphism-related subfields with the setup n = 12 and
η = 3. Each edge indicates a field extension and is labeled with the corresponding
extension degree.

n 4 6 8 9 10 12 14 15

Dimensions (4, 2) (2, 1) (8, 4) (6, 3) (2, 1) (4, 2) (2, 1) (2, 1)

n 16 18 20 21 22 24 25 26

Dimensions (16, 8) (6, 3) (4, 2) (2, 1) (2, 1) (8, 4) (10, 5) (2, 1)

Table 10: Dimensions of the GSM of Definition 5 on (K1,K2) of absolute degrees
(2n, n), and constructed with an order n TNFS automorphism.
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(a) Lattice of σ1-related subfields of K1

(absolute degree 24).
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2
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(b) Lattice of σ2-related subfields of K2

(absolute degree 12).

Fig. 9: Lattices of automorphism-related subfields with the setup n = 12 and
η = 4. Each edge indicates a field extension and is labeled with the corresponding
extension degree.
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7 Experimental validation: acceleration of the linear
algebra step

To validate our findings, we provide a Sagemath implementation of the Tower
Number Field Sieve in which the user can choose to use the usual Schirokauer
map, or our construction of Galois Schirokauer map together with TNFS auto-
morphisms. We demonstrate our results by applying TNFS on degree 6 and 12
finite fields. Our implementation is available at 3 together with the complete data
of our experiments (polynomials, TNFS parameters ...). We emphasize that our
implementation is not optimized, in fact, all presented examples in this section
can be solved with elementary algorithms. The goal of our implementation is
twofold. First, it shows that our theoretical findings work and allow to compute
discrete logarithms. Second, it demonstrates the factor 6 and 12 reduction of the
size of the matrix in TNFS brought by our work. These results are presented
in Table 11. Using automorphisms or not, no example worked with the setup
(n = 12, η = 3, κ = 4). Our explanation is that the sieve dimension that is
2η = 6 is too low given that the characteristic size is small. To make such ex-
amples work, it is necessary to consider sieve elements with degree larger than 1
over Kh, which is not supported by our code, or to increase the characteristic
size, thus reaching values that are out of the scope of what Sagemath can handle.
The implementation works in the following steps.

Finite field bitsize Setup: (Matrix dimension), rank
of pn η = Without automorphism Our work

F296 30 2 (34686× 24006), 23334 (5849× 4001), 3878

F376 32 3 (1177× 510), 502 (202× 85), 81

F536 35 2 * (15580× 9874), 9666

F1712 50 4 (86934× 23196), 22647 (7311× 1936), 1874

F5312 69 4 * (22674× 15469), 15291

Table 11: Experiment results. Comparison of the matrix size between the use or
not of TNFS automorphisms of orders 6 and 12. A * indicates that SageMath
killed the computation because of the large matrix size. The complete data of
these computations are provided in the git repository.

Polynomial selection. For n = 6, 12, to perform a computation on a finite
field Fpn of characteristic p, the polynomials must be selected following the
Conjugation method presented §2 and Table 4. This ensures the presence of an
order n TNFS automorphism as proved in Propositions 5 Moreover, the poly-
nomials must be chosen with the constraints on the number of real roots of
Theorem 1 which are recapitulated in Table 5. The choice of the polynomials

3 gitlab.inria.fr/halaswad/accelerating_tnfs_with_galois_automorphisms

gitlab.inria.fr/halaswad/accelerating_tnfs_with_galois_automorphisms
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is done by the method polyselect in tnfs.py. The user must set adequate
polynomials (h, f1, µ . . . ) in the method set_from_family.

Relation collection. We use the special-q technique to collect relations [35]. Only
one special-q ideal is considered per orbit. Thereafter, if the automorphisms are
not used in the code, we simulate their “non-use” by expanding each relation
into n conjugate relations which is done with the method expand_list_phi. If
the automorphisms are used, then we do not expand the relations and proceed to
the next step (hence, we only have one “representative” relation per orbit). The
relation collection is carried by the method relation_collection in tnfs.py.

Linear algebra. Our contributions appears at this step. Let ζ ∈ Fℓ denote the
n− th primitive root of unity corresponding to the TNFS-automorphism of Fpn

that expresses as σ : x 7→ xζ . We define the GSM (Λdn,1, Λdn,2) from Definition 5,
where d6 = 1 and d12 = 2. With this construction and these Schirokauer maps,
we proved the existence of a virtual logarithm map vlog with the following
properties. If p is a prime ideal in the factor basis of orbit size equal to n, then
vlog(pσ) = ζ vlog(σ)—here we drop the subscripts as the statement is valid on
both sides. Further, if the orbit size is a strict divisor of n, then vlog(p) = 0.

We ask the linear algebra step to look for a virtual logarithm map fulfilling
the above two properties as follows. If p is an ideal in the factor basis, then it
corresponds to a column in the matrix that we denote Cp. This column contains
the valuations on p in the relations. One the one hand, if p has a size n orbit
under σ, then the n columns Cp, Cpσ , . . . , Cpσn−1 are replaced by one column
equal to Cp + ζCpσ + · · ·+ ζn−1Cpσn−1 via a matrix multiplication in our code.
On the other hand, if p has an orbit size strictly smaller than n, then the columns
corresponding to p and its conjugates are removed.

Remark 3. It is noteworthy that if the relations were expanded, then the previous
operation on the columns would result in a rank one family for each set of
conjugate relations, which confirms that only one relation per orbit is useful
when the automorphisms are deployed. Thus, the method expand_list_phi
should not be used when the automorphisms are deployed.

Consequently, the number of columns is reduced by a factor slightly larger
than n and the number of rows by a factor n. We did not implement the Wiede-
mann algorithm in Sagemath. We rather use the linear algebra solving algorithm
implemented in Sagemath to check that our algorithm computes a virtual log-
arithm map as expected. Therefore, we only compare the sizes of the matrices
depending on whether the order n TNFS automorphism is deployed or not. Ta-
ble 11 presents the matrices sizes on several finite fields of degree 6 and 12. In
the tnfs.py file, the methods relation_matrices constructs the matrix of re-
lations, and the methods linear_algebra and modified_linear_algebra find
a kernel element of the matrix. The first applies when the automorphisms are
not used, and the second when they are used.

To estimate the gain in performance in the linear algebra brought by the
automorphisms if the Wiedemann algorithm was deployed, recall from §4.2 that
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decomposing the matrix in basis ζ allows the acceleration factor in (4) which
we approximate to n2. Integrating the GSM constructions in the cado-nfs soft-
ware [1] and modifying the linear algebra to use order n automorphisms is left
for a future work.

Final step : verification. While we did not implement the individual logarithm
step—as our work does not improve it—we ensured the consistency of the vir-
tual logarithm map computed by our linear algebra step. This was achieved by
considering numerous sieve elements ϕ in one of the two middle number fields
that correspond to relations from previous steps. Subsequently, we confirmed
that their virtual logarithms correspond to logarithms, in some basis g̃, of their
projection to the finite field. This is done as follows.

We choose g a generator of the sub-group of order ℓ of the finite field’s
multiplicative group. For each considered ϕ, we compute on the one hand its
virtual logarithm vlog(ϕ) using the output of our algorithm, and on the other
hand its logarithm logg(ϕ) in basis g using the logarithm function implemented
in Sagemath. While the quotient vlog(ϕ)/ logg(ϕ) mod ℓ is constant over the
picked ϕ’s, say equal to c, we continue with different sieve elements. If a sieve
element provides a quotient different from c, then the virtual logarithm computed
does not correspond to a logarithm map in the finite field and the algorithm
fails. If the quotient is constant over all the ϕ′s (in number of 40 in each of
our experiments), then we assume that the algorithm succeeded in computing
a virtual logarithm that “corresponds” to a logarithm in the finite field. This
means that there exists a basis g̃ such that for each element t in the finite
field that lifts to a smooth element t in one of the two number fields, we have
vlog(t) ≡ logg̃(t) mod ℓ. Here, the constant c is equal to logg̃(g). The function
log_consistency_check within tnfs.py performs this consistency check.

7.1 Performing a computation

In the following B, q0, and q1 denote respectively the smoothness bound, the
smallest special-q prime and the largest special-q prime used. In each special-q
lattice, the search for relations was performed in a ball of dimension 2 × η and
with a radius rad. The radius is set according to the input E so that the total
search space is approximately of the size of the hypercube [−E,E]2·η. See the
document tnfs.py for the exact expression of rad. Moreover, in some of the
computations a line-sieve is performed to factor all elements ϕ with coefficients
sizes bounded by the new parameter El. This allows to find relations that do
not exhibit prime ideals belonging to the special-q range.

The reader can perform a computation by running the play_tnfs.sage.
The variable attempt sets the parameters of the example that will be run, the
boolean use_auto indicates to use or ignore the TNFS automorphism and the
integer d must be set according to Corollary 2. Hence, the variable d must be
set to 1 when employing an order 6 automorphism and to 2 when the order of
the automorphism is 12.
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A Proofs of Proposition 1 and Proposition 3

A.1 Proof of Proposition 1

First, each of the three sets Γ/Γ ℓ, O×/(O×)ℓ, and I/Iℓ is clearly an Fℓ-vector
space where the underlaying scalar product is (λ, x) 7→ xλ. To prove the iso-
morphism statement, it is sufficient to prove that we have the following exact
sequence and that it splits:

1 −→ O×/(O×)ℓ
i−→ Γ/Γ ℓ j−→ I/Iℓ −→ 1.

In the following, an element x is written x when considered modulo ℓ-th powers.
The morphism i is injective. The morphism i is derived from O× ⊂ Γ .

To prove that it is one-to-one, consider x ∈ O× such that i(x) = 1. That is, there
exists γ ∈ Γ such that xγℓ = 1. Then, γℓ belongs to O, and so do γ. Indeed, if
P (X) is a monic polynomial with integer coefficients vanishing on γℓ, then P (Xℓ)
is a monic polynomial with integer coefficients vanishing on γ. Furthermore, γ
belongs to O× since γ(xγℓ−1) = 1. In conclusion we have x ≡ 1 mod (O×)ℓ.

The morphism j is surjective. The morphism j is defined by γ mod Γ ℓ 7→
(γ) mod Iℓ. It is clearly well defined, let us prove its surjectivity. Since the class
number hK is coprime to ℓ, let a, b ∈ Z such that ahK + bℓ = 1. Consider I ∈ I.
We have

I = IahK+bℓ = (Ia)hK(Ib)ℓ,

which implies I ≡ (Ia)hK mod Iℓ. By definition of the class number, there exists
γ ∈ Γ such that (Ia)hK = (γ), and therefore, j(γ) ≡ I mod Iℓ.

The sequence is exact. It remains to prove that Im(i) = Ker(j). We
clearly have the direct inclusion. For the other inclusion, let γ ∈ Ker(j), and
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consider γ ∈ Γ any representative. There exists I ∈ I such that (γ) = Iℓ, which
means that Iℓ is the identity element in the class group. Since ℓ is coprime to
the class number, then I is the identity element in the class group as well, and
so is I−1. Therefore, there exists γ′ ∈ Γ such that I−1 = (γ′). Consequently,
(γγ′ℓ) = IℓI−ℓ = K which implies that γγ′ℓ belongs to O×, and thus, γ belongs
to O×/(O×)ℓ = Im(i).

The sequence splits. For each ideal I ∈ I, let γI ∈ Γ a generator of IhK .
Recall Bezout’s identity ahK + bℓ = 1 with a, b ∈ Z and define the section
s : I/Iℓ → Γ/Γ ℓ as s(I) = γa

I . The morphism s is clearly well defined. Further,
for all I ∈ I/Iℓ, we have j(s(I)) = j(γa

I ) = (γa
I ) = IahK = I. Therefore j◦s = Id,

and the sequence splits.
It remains to prove the basis statement. Direchlet’s theorem states the fol-

lowing group isomorphism
O× ≃ µK × Zr.

Since |µK| is coprime to ℓ, then by Bezout’s identity, there exists c, d ∈ Z such
that c|µK| + dℓ = 1. Then for any ϵ ∈ µK, we have ϵ = ϵc|µK|+dℓ = (ϵd)ℓ.
This proves that µK/µ

ℓ
K is the trivial group. We have the following vector space

isomorphism
O×/(O×)ℓ ≃ (Z/ℓZ)r,

thus proving the unique representation of units modulo (O×)ℓ in a system of fun-
damental units. The unique representation of ideals within I/Iℓ in the set F/Fℓ

directly results from the unique factorization of ideals.

A.2 Proof of Proposition 3

By Dirichlet’s theorem, the unit rank of K is rK = m/2 − 1 since its signature
is (0,m/2), and the unit rank of the subfield K̃ is m/2 − 1 as well since its
signature is (m/2, 0). Therefore, the group of units O×

K and O×
K̃ have the same

rank, and hence their index v is finite. Suppose now that v is coprime to ℓ. To
not encumber the notations, we write r instead of rK.

Let {u1, . . . , ur} a system of fundamental units of K̃. When considered mod-
ulo (O×

K̃)
ℓ, this family forms an Fℓ-basis of the vector space O×

K̃/(O
×
K̃)

ℓ. We
shall prove that it is also a basis of O×

K/(O
×
K)

ℓ. Since both spaces have the same
dimension, it is sufficient to prove that the family is free.

Considered as elements of O×
K , let λ1, . . . λr ∈ Fℓ such that uλ1

1 . . . uλr
r ≡

1 mod (O×
K)

ℓ. Then, there exists µ ∈ O×
K such that uλ1

1 . . . uλr
r ×µℓ = 1 where the

equality is in O×
K . Raising both sides of the equality to the power the index v =

[O×
K : O×

K̃ ], we get

uλ1·v
1 . . . uλr·v

r × (µv)
ℓ
= 1.

Since µv belongs to O×
K̃ , the above equality holds in O×

K̃ . Therefore we have
uλ1·v
1 . . . urλr·v ≡ 1 mod (O×

K̃)
ℓ, from which we deduce λ1 × v ≡ · · · ≡ λr × v ≡

0 mod ℓ. Since v is coprime to ℓ, we have λi ≡ 0 mod ℓ for all 1 ≤ i ≤ r, which
proves that {u1, . . . , ur} mod (OK)

ℓ is a Fℓ basis of O×
K/(O

×
K)

ℓ.
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Let u ∈ O×
K/(O

×
K)

ℓ. We just proved that u belongs to O×
K̃/(O

×
K̃)

ℓ, which
means that σk/2(u) = u. Applying Corollary 1 we get vlog(u) = 0.

B The Wiedmann algorithm

Consider M a square non-invertible matrix of size N over Z/ℓZ, and let λ des-
ignate the average number of non-zero coefficients per row. Wiedemann’s algo-
rithm [43] computes a non-trivial kernel element of M in time O(λN2). The
idea is to compute a non-zero polynomial that vanishes at M . Let us first show
how to compute a solution to the linear equations given a vanishing polynomial.

Consider P =
s∑

i=0

piX
i ̸= 0 such that P (M) = 0. This vanishing writes as

s∑
i=0

piM
i = 0.

We claim that p0 = 0. Indeed, first, since the matrix is not invertible, there exists
a non-trivial kernel element v of M . Second, since 0 = P (M)v =

∑s
i=0 pi(M

iv) =
0, we have

−p0v =

s∑
i=1

pi(M
iv) = 0,

where the last equality comes from Mv = 0. Consequently, since v is non-zero,
we get p0 = 0. Let k the lowest degree of P in X, then factoring by Xk we get
P = XkP̃ , with P̃ (0) ̸= 0. Hence, P̃ does not vanish on M . It is sufficient to
compute a vector ω that does not belong to the kernel of P̃ (M) to output a
non-trivial kernel element of M . Indeed, one multiplies iteratively P̃ (M)ω by M
at left until the result is non-zero and is in the kernel of M . The process finishes
after at most k iterations. Wiedemann’s algorithm reduces the computation of
a kernel element of M to the computation of a vanishing polynomial on M .

Computing a vanishing polynomial on M . Wiedemann’s algorithm uses the
Krylov technique to compute a non-zero vanishing polynomial on M with high
probability. First, the algorithm chooses two random vectors a and b of size N ,
and computes the Krylov sequence {aTM ib}2N−1

i=0 , where aT is the transposed
of a. Because the matrix is of size N , there exists a vanishing polynomial of M
of degree at most N , which implies that the Krylov sequence is generated by
a recursive relation of order at most N . Hence, the 2N terms are sufficient to
compute a recursive relation from which one extracts a polynomial P of degree
at most N such that:

aTP (M)b = 0.

Indeed, this can be done naively in O(N3) operations by solving a linear system of
N equations from the Krylov sequence, where the unknowns are the coefficients
of the recursive relations. However, this is too costly. Instead, the Berlekamp-
Massey algorithm [5,32] computes a polynomial P verifying the above property
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in time O(N log(N)), essentially by applying the extended Euclidean algorithm.
The polynomial P is in fact a vanishing polynomial on M with high probability.
More precisely, the probability that P vanishes on M is 1 − O(1/ℓ), which is
very high. See [41] for a proof of this probability.

Conclusion and complexity of Wiedemann’s algorithm. In conclusion, to compute
a non-trivial kernel element of the matrix M the linear algebra step proceeds
as follows. First, a sequence of 2N terms {aTM ib}N−1

i=0 is computed. This can
be done by first iteratively computing the sequence {M ib} and second multi-
plying by aT . Each matrix-vector multiplication is done in O(λN) arithmetic
operations. Hence, computing the sequence can be done in O(λN2) arithmetic
operations. Second, the algorithm computes a polynomial P that vanishes on
M (with high probability), this is done using the Berlekamp-Massey algorithm
in O(N log(N)) arithmetic operations. Third, the lowest degree monomial is
factored in P and the polynomial P̃ is defined as P = XkP̃ with P̃ (0) ̸= 0.
Then a random vector ω is picked such that P̃ (M)ω ̸= 0. Then for increment-
ing i = 1, . . . , k, the terms ωi := M i(P̃ (M)ω) are computed until ωi0 ̸= 0
and ωi0+1 = 0, which happens after at most k < N iterations. The vector ωi0

is the wanted vector that corresponds to virtual logarithms. Each iteration is
a matrix-vector product, hence, all iterations together cost O(λN2). In conclu-
sion, the complexity of the linear algebra step is O(λN2) in number of arithmetic
operations.

Furthermore, a major improvement of Wiedemann’s algorithm is its block
variant [12] which allows parallelization, and hence significant accelerations in
discrete logarithm computations.
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